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A result due to Eisenhart is used to justify an averaging process of a theory of 
gravity. More results of the theory are also deduced, similar to those derived by 
Einstein for the Nordstr/Sm theory. 

In a recent work (Mahanta, 1980), which will be referred to as I, an 
attempt was made to derive the Einstein field equations of general relativity 
by a kind of averaging procedure from the field equations of a model 
(Mahanta, 1979) proposed to represent hadronic interactions. This model 
uses a conformally flat space-time and has certain features common with the 
NordstrSm theory (Nordstr6m, 1913) but is more general since in addition 
to the familiar scalar field another fourth-rank tensor pq~t seems to play an 
important part. However, the basic field equation in NordstrOm theory also 
appears in this model (Mahanta, 1979) as 

R = 12KT (1) 
a 

or after writing a = Kc4/IrG from I: 

R = (12rrG/c 4) T (2) 

The Einstein field equations are supposed to result from an averaging 
procedure (over space-times of atomic dimensions and periods) from the 
following equation: 

aJk~l~j--l~il~----(8qTa//c4)IZ~''~l(--pij ' l 'ara~'k 2 V k  " "  - -  a k;il l"IJk)] (3) 
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As a result of this averaging we made the assumption that the tensor 

1 pu.I + rl~) r~+ ~ ( - -~ i ,  
J manifests itself as the macroscopic energy-momentum tensor T~(,,~c ), while 

the left-hand side 

-~SkR G~-R~_I j -  

becomes the Einstein tensor in a V 4 whose fundamental tensor gu(,.~c) is 
obtained by solving the Einstein field equations 

R ~ - �89 = - ( 8rrG / c  4 ) T/(m~) (4) 

In this paper we try to justify this assumption. We take the conformally 
flat metric of microscopic space-time as 

~ =  H~[( dx~ dx~)~-( dx~)2-(d~) ~] (5) 

so that 

�9 . 1 i j  
gU = H--ST g i j  = H 2 " r l i j  and (6) 

7/u being the Minkowski tensor. The components of the Ricci tensor in 
covariant, contravariant, and mixed forms are easily calculated (Eisenhart, 
1966) for the metric (5). In particular, 

02H 02H O2H 

(0xl)  2 (Ox2) 2 (0x3) 2 

�9 . 6 O2H 
R -  gu.R ' ' = - ~  ( OxO)2 

6 )rnH (7) 

Thus equation (2) becomes the NordstriSm equation (Einstein, 1914) 

H • H =  ( 2 ~ O l c 4 ) r ( -  g)~/2 (8) 

Our considerations will be based on (i) the following result due to 
Eisenhart (1966) and (ii) an approximation used by Einstein (1913) in his 
critique of the NordstrOm theory. 
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(i) If for a V 4 , / R i j  - P g i j / =  0 admits of a simple root P0 and a triple 
root Pl, the elementary divisors being simple, the principal directions 
corresponding to P0 and Pl satisfy the respective conditions, 

g, jNo/XJ / = 1, g,jX~l,/X~/= - 1 (h = 1,2, 3) 

then 

Rij  - �89 = (Po - P l )ho / iXo / j  - �89 + Pl)gij  (9) 

representing a continuum of a perfect fluid, the congruence h~/consisting of 
the lines of flow. 

(ii) The space-time regions over which the averaging is performed are 
so small that the quantities (In H ) ~  =- ( 1 / H ) H i  may be considered to be 
approximately constants over them (this assumption was made by Einstein 
to establish that in Nordstr5m theory the gravitating mass of an isolated 
particle is determined by its inertial mass). 

From considerations of symmetry and invariance of eigenvalues the 
assumption (i) is valid for the metric (5), P0 belonging to a timelike 
congruence ;k0/~ and Pl = P2 = P3 to three spacelike congruences, and it may 
be verified that under assumption (ii) the four-vector H ~ is the eigenvector 
of the Ricci tensor R~j with the nondegenerate eigenvalue 

Po = ( l / H 3 )  U]H-  (1/H4)~?i:H, iH, j (10) 

Since H.~ is timelike, we have 

Xo/i = ( 1 / A 1 H ) I / 2 H ,  i (11) 

where 

A , H  = gOH. ,H, j  = ( 1 / H 2  ),lOH, iH, j > 0 (12) 

A1H is treated as a constant approximately over the space-times of atomic 
dimensions using assumption (ii) since it is formed from the ( 1 / H ) H i .  

Writing equation (9) in the mixed form we get 

G~-R~ ' J J ' " - ~ k R  = (Po (P0 + - O l )hO/khO/ - -  ~ Ox)8], (13) 

= (Oo - p , ) ( 1 / H : A f l ) n J ' H . k H , -  �89 + p,)8~ (14) 

using equation (11). The space-time averaging over a small region applied to 
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equation (14) gives 

. . . .  1 j -  G/, =- R~  ~61,R = (fro - f x ) ( 1 / H Z A , H ) ~ l J Z H , * H . t -  �89 + f , ) 6{  (15) 

using assumption (ii), i.e., 

c~ = ( fo - f ,  ) x o/~ x~, / -  �89 ( po + f ,  ) a/~ (16) 

The raising of the suff ixj  in the first term on the right-hand side is by 
the tensor g J/but we can show that Xo/k and ~ / c a n  also be regarded as the 
covariant and contravariant forms of the principal congruence of the tensor 
R~, formed from the metric tensor g,j( ..... } with the corresponding eigenvalue 
Po, the space-time average of 0o. To do so, consider the eigenvector equation 
of R~, for the eigenvalue Po 

( R~ - ~Lpo ) [ a / H (  A,H )"~] H , j  = o (17) 

Under assumption (ii) averaging of equation (17) over atomic space-times 
gives 

( ~  - 8Lf0)x0/j= 0 (18) 

and 

(R-~ - 6~fo) hk0/= 0 (19) 

can be similarly obtained by averaging the equivalent form of the eigenvec- 
tor equation 

( R~ - 8~00) x~0/= 0 (20) 

From equations (18) and (19) we see that ~o/~, ~k0/can also be regarded 
as the covariant and contravariant forms of the principal congruence of R~, 
for the eigenvalue P0 with gij( .... .) as the metric tensor used for raising and 
lowering of suffixes since equation (19) can also be obtained from equation 
(18) by using the tensor gig( . . . .  .) on which R~,. is based for raising and 
lowering of indices (for a nonrepeated eigenvalue like Po the eigenvector ?~k0/ 
is uniquely determined). 

Thus we see that the averaged Einstein tensor G~ is expressed by a 
formula (16) where the relevant quantities have meanings similar to those in 
(13) but with a changed metric, and we thus see that the tensor G~ retains 
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both its tensor character and geometrical meaning after the averaging over 
atomic space-times as envisaged in I. This completes the first part of the 
work. 

We add a few more results of our formalism. 
We start with the equations 

Ts = 0 (21) 

i .e. ,  [Td(-g)l/2l.j=lgjm,k[TJm(-g)l/2]=(1/H)HkT(-g)l/2 
(22) 

Using equation (8) we get 

[ T ~ ( -  g ) l , j  = (c4/2~rG)Hk[3H 

If we put 

(23) 

we have 

( H2t[).j = - (2"lrG/c4)- lHk I--IH (25) 

so that we get from equation (23) 

giving an exact conservation equation (Einstein, 1913). The eigenvalue 00 of 
the principal congruence Xo/,=(1/A~H)I/2H~ (an approximate result) 
given by equation (10) can now be written as 

Po = (2rrG/c4)( T -  t~ H2) (27) 

Also from the relation (Eisenhart, 1966) 

P0 q- Pl q- P2 -t- P3 = R (28) 

Pl = ~( R -  Po) = (2rrG/3c4)( 5T + t~ H2) 

using relations (2) and (27). 

(29) 

= , , ~ t m , , H  ~ ",1 

i.e., t {=(c4/2rrG)(1/H2)[-r lJ 'H kH t+ , oi[ .... ~oj~1,77 H mH,,,) ] (24) 

Then 
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